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INTRODUCTION

• Various λ-calculi have been used successfully as foundations for procedural
programming.

• Object-oriented programming is advertised as a new computing paradigm,
conceptually and pragmatically separate form ordinary procedural program-
ming.

• Is that true? That is, are there object calculi, that can play the role of λ -calculi
for object-oriented programming?

• The immediate answer seems no, or why bother. After all, methods have pa-
rameters, and parameters need to be modeled by λ-abstraction. Hence object
calculi, whatever they are, must be extensions of λ-calculi. Functions seem
more fundamental than objects.

• This kind of answer has stimulated work aimed to encode object calculi
within λ-calculi. This approach has been successful for untyped calculi, but
has proven unexpectedly difficult for typed calculi.
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Approach

• We aim to investigate the type theory of object calculi. That is, we aim to in-
vestigate the properties of object types separately from the properties of func-
tion types. We are pushed in this direction because natural notions of object
types are not easily, or at all, definable in most standard formalism.

• In the process, we discover that object calculi can be seen even as more fun-
damental than λ -calculi: functions can be defined from objects, and function
types can be defined from object types, in a uniform way and in a variety of
formalisms. (The opposite is not nearly as easy.)

• For our study of object typing, it does not much matter whether the
underlying computation paradigm is procedural, imperative, or concurrent.
For easier comparison with λ-calculi we adopt a procedural (non-imperative,
non-concurrent) semantics.
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A Very Informal Tutorial

• Object   1   data + operations   1   fields + methods (Jargon)

“A vehicle with seats and a method of locomotion.” (Concept)

A VW with a VW engine. (Instance)

• Object Subsumption

“This object is as good as that object, use this one instead.”

Drive a Porsche, not a VW.

• Method Override (i.e. replacement)

“This method is as good as that method; use this on instead.”

Replace this car’s engine with an old VW engine.

• Subsumption + Override = Problems

“Replace this object with a better one, then replace its methods.”

Replace this Porche’s engine with an old VW engine.   (!!)
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Solutions:

• Subsumption without Override

Drive a Porche; never change its engine.

• Override without Subsumption

Install an old VW engine, but only in a VW.

• Parametric Override

“This method is as good as that method, and it is fully general;

use this one instead.”

Replace this car’s engine with an old engine of the same kind.
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UNTYPED OBJECT CALCULI
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An Untyped Object Calculus

Syntax of the ς-calculus

a,b ::= terms

x variable

[li=ς(xi)bi iÏ1..n] (li distinct) object

a.l field selection / method invocation

a.lfiüς(x)b field update / method override

λ(x)b function

b(a) application

An object [li=ς(xi)bi iÏ1..n] is a collection of methods ς(xi)bi, named by li.

A method ς(x)b has a self parameter x, and a body b.

A method’s self denotes its host object.

Through self, a method may refer to its sibling methods.
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Primitive Semantics of the ς-calculus

Let o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o.lj Òñ bj{xj←o} (jÏ1..n)

o.ljfiüς(y)b Òñ [lj=ς(y)b, li=ς(xi)bi iÏ(1..n)-{j}] (jÏ1..n)

Theorem: Church-Rosser

We are dealing with a calculus of objects (not of functions), with a deterministic
semantics that is non-imperative and non-concurrent.

We have investigated imperative versions of the calculus.

We have not investigated a concurrent version.
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(Note)

Equational Theory of the ς-calculus

(Eq Symm) (Eq Trans)

b ↔ a a ↔ b      b ↔  c
—–— ——————

a ↔ b a ↔ c

(Eq x) (Eq Object)  (li distinct)

bi ↔ bi’  ÓiÏ1..n
——— ————————————

x ↔ x [li=ς(xi)bi iÏ1..n]  ↔   [li=ς(xi)bi’ iÏ1..n]

(Eq Select) (Eq Override)

a ↔ a’ a ↔ a’      b ↔  b’
———— —————————

a.l  ↔   a’.l a.lfiüς(x)b  ↔   a’.lfiüς(x)b’

(Eval Select)  (where a7[li=ς(xi)bi iÏ1..n]) (Eval Override)  (where a7[li=ς(xi)bi iÏ1..n])

jÏ1..n jÏ1..n
—————— ——————————————

a.lj  ↔  bj{xj←a} a.ljfiüς(x)b ↔  [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)-{j}]
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Basic Examples

Let o   @   [l=ς(x)x.l] A divergent method.

then o.l  Òñ  x.l{x←o}  7  o.l  Òñ   ...

Let o’   @   [l = ς(x)x] A self-returning method.

then o’.l  Òñ  x{x←o’}  7  o’

Let o”   @   [l = ς(y) (y.lfiüς(x)x)] A self-modifying method.

then o”.l  Òñ  (o”.lfiüς(x)x)  Òñ  o’
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Notation

Our calculus is based entirely on methods; fields (instance variables) can be seen

as methods that do not user their self parameter:

Fields:

[..., l=b, ...]   @   [..., l=ς(y)b, ...], for an unused y

Field update:

o.lj:=b   @   o.ljfiüς(y)b, for an unused y

Moreover, it is convenient to have a notation for “uninitialized” components,

which are set to diverge on invocation:

[..., l¶, ...]   @   [..., l=ς(x)x.l, ...]
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Example: Object-Oriented Booleans

true @   [if = ς(x) x.then,  then¶,  else¶]

false @   [if = ς(x) x.else,  then¶,  else¶]

cond(b,a’,a”) @   ((b.then:=a’).else:=a”).if

cond(true, false, true)   7   ((true.then:=false).else:=true).if

  Òñ  ([if = ς(x) x.then,  then = false,  else¶].else:=true).if

  Òñ  [if = ς(x) x.then,  then = false,  else = true].if

  Òñ  [if = ς(x) x.then,  then = false,  else = true].then

  Òñ  false
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Example: Object-Oriented Naturals

zero @
[case = λ(z) λ (s) z,

 succ = ς(x) x.case := λ (z) λ(s) s(x) ]

Each numeral has a case fields that contains either λ(z)λ (s)z for zero, or
λ(z)λ(s)s(x) for non-zero, where x is the predecessor (self). Each numeral has a
succ fields that modifies the case field to the non-zero version.

Informally: n.case(z)(s)   =   z if n is zero, s(n-1) otherwise

zero 7 [case = λ(z) λ (s) z, succ = ... ]

one @   zero.succ 7 [case = λ(z) λ (s) s(zero), succ = ... ]

two @   one.succ 7 [case = λ(z) λ (s) s(one), succ = ... ]

iszero @   λ (n) n.case(true)(λ(p)false)

pred @   λ (n) n.case(zero)(λ(p)p)
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Example: Calculator

calculator @
[arg = 0.0,

 acc = 0.0,

 enter = ς(s) λ(n) s.arg := n,

 add = ς(s) (s.acc := s.equals).equals fiü ς(s’) s’.acc+s’.arg,

 sub = ς(s) (s.acc := s.equals).equals fiü ς(s’) s’.acc-s’.arg,

 equals = ς(s) s.arg ]

The equals methods works as the result button and as the operator stack.

calculator .enter(5.0) .equals = 5.0

calculator .enter(5.0) .sub .enter(3.5) .equals = 1.5

calculator .enter(5.0) .add .add .equals = 15.0
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Functions as Objects

Translation of the untyped λ -calculus

äxã @ x

äb(a)ã  @  äbã ¢ äaã where  p ¢ q @ (p.arg := q).val

äλ(x)bã  @
[arg¶,

 val = ς(x)äbã{x←x.arg}]

ä(λ (x)b)(a)ã   7   ([arg¶,  val = ς(x)äbã{x←x.arg}].arg:=äaã).val  Òñ  äb{x←a}ã

Preview: this encoding extends to typed calculi:

äA→Bã @  [arg: äAã, val: äBã] 1st-order λ  into 1st-order ς
V @  µ(X)[arg: X, val: X] untyped λ into 1st-order ς with µ
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Recursion

äµ(x)bã  @
[rec = ς(x)äbã{x←x.rec}].rec

äµ(x)bã   7   [rec = ς(x)äbã{x←x.rec}].rec  Òñ  äb{x←µ(x)b}ã

fix @
[arg¶,

 val = ς(x)((x.arg).arg := x.val).val]

fixf   @   fix.arg := f   Òñ   [arg = f,  val = ς(x)((x.arg).arg := x.val).val]

fix¢f   Òñ   fixf.val   Òñ   ((fixf.arg).arg := fixf.val).val   Òñ   (f.arg := fix¢f).val

   7   f¢(fix¢f)
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Towards Types for Untyped Calculi

A record type

Üli:Bi iÏ1..ná

is the type of records with components named li of type Bi.

A record with more components is a subtype of a record with fewer component,
provided the corresponding components are in the subtype relation:

Üli:Bi iÏ1..n+má <: Üli:B’i iÏ1..ná      if      Bi <: B’i       for i Ï 1..n

Record types are covariant in their components.

An record can be used in place of another record with fewer methods, by
subsumption:

 a:A      ∧       A<:B      ⇒       a:B
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An object type

[li:Bi iÏ1..n]

is the type of those objects with methods li: ς(x:A)bi, each having self type A <:
[li:Bi iÏ1..n] with result type Bi.

An object type with more methods is a subtype of an object type with fewer
methods:

 [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

Object types are invariant (neither covariant nor contravariant) in their compo-
nents. This is necessary for soundness.

An object can be used in place of another object with fewer methods, by
subsumption:

 a:A      ∧       A<:B      ⇒       a:B
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Interpretations

Self-Application Semantics [Kamin 1988]

[li=ς(xi)bi iÏ1..n]   @ Üli=λ(xi)bi iÏ1..ná (a record of functions)

o.lj @ o†lj(o) Òñ   bj{xj←o} (jÏ1..n)

o.ljfiüς(y)b @ o†lj:=λ(y)b Òñ   [lj=ς(y)b, li=ς(xi)bi iÏ(1..n)-{j}] (jÏ1..n)

This is a valid interpretation (it satisfies the primitive semantics). Moreover, it
matches the most common implementation technique for objects, so it is the in-
tended interpretation.

But it does not extend to typed calculi:

[li:Bi iÏ1..n]    @   µ(X)Üli:X→Bi iÏ1..ná

But NOT, e.g.: µ(X)Ül:X→A, l’:X→Bá <: µ(Y)Ül:Y→Aá
So, regrettably, this interpretation cannot be adopted.

N.B. we provide a denotational semantics in CUPER, which is based on the self-
application interpretation.
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Recursive-Records Semantics [Cardelli 1988]

[li:Bi iÏ1..n] @   Üli:Bi iÏ1..ná
[li=ς(xi)bi iÏ1..n] @   µ(x)Üli=bi{xi←x} iÏ1..ná

Satisfies object subtyping and the primitive semantics of invocation, but not the
primitive semantics of override.

Generator Semantics [Cook 1989]

[[li:Bi iÏ1..n]] @   [li:Bi iÏ1..n]→[li:Bi iÏ1..n] a generator type

[li:Bi iÏ1..n] @   Üli:Bi iÏ1..ná an object type

[li=ς(xi)bi iÏ1..n] @   λ (x)Üli=bi{xi←x} iÏ1..ná an object generator

new(g) @   í(g) an object

Satisfies object subtyping (not generator subtyping). Does not satisfy the primi-
tive semantics of method invocation on objects.
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Class Semantics [Pierce, Turner 1994]

[li:Bi iÏ1..n]    @    Ô(X)Üli:X→Bi iÏ1..ná

Satisfies object subtyping but not the primitive semantics of override, because it
separates fields from methods, and methods cannot be overridden in objects. A
translation of objects is possible but non-trivial (is type-driven), because of the
splitting of self into fields and methods. Fits well with class-based object-
oriented languages.

Sum-of-Extensions Semantics [Abadi, Cardelli 1994b]

[li:Bi iÏ1..n]    @    Ô(X::↑ (li iÏ1..n)) µ(Y) Y→Üli:Bi iÏ1..n,Xá

Derived from a denotational semantics of object types. Satisfies the primitive
semantics (is based on the self-application semantics at the term level). Satisfies
object subtyping only in a specialized theory of Ô.

• The interpretations that work best, if at all, are the most complicated. This is a
pity, because the intended type theory of objects, which we now study, is al-
most trivial.
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FIRST-ORDER OBJECT CALCULI
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A First-order Calculus

Judgments:

E ∫ Q environment E is well-formed

E ∫ A A is a type in E

E ∫ A <: B A is a subtype of B in E

E ∫ a : A a has type A in E

Environments:

E 7 xi:Ai iÏ1..n environments, with xi distinct

Types:

A,B   ::=   [li:Bi iÏ1..n] object types, with li distinct

Terms (identified up to α -conversion):

a,b   ::= x

[li=ς(xi:Ai)bi iÏ1..n]

a.l

a.lfiüς(x:A)b
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The object fragment:

(Type Object)  (li distinct) (Sub Object)  (li distinct)

E ∫ Bi      ÓiÏ1..n E ∫ Bi      ÓiÏ1..n+m
—————— ——————————

E ∫ [li:Bi iÏ1..n] E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Val Object)  (where  A7[li:Bi iÏ1..n])

E, xi:A ∫ bi : Bi      ÓiÏ1..n
—————————

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Override)  (where  A7[li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n]      jÏ1..n E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A
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With some additional, standard rules we obtain a complete calculus:

(Env ) (Env x)

E ∫ A      xÌdom(E)
—— ———————

 ∫ Q E,x:A ∫ Q

(Sub Refl) (Sub Trans)

E ∫ A E ∫ A <: B      E ∫ B <: C
———— —————————

E ∫ A <: A E ∫ A <: C

(Val x) (Val Subsumption)

E’,x:A,E” ∫ Q E ∫ a : A      E ∫ A <: B
———–—— ————————

E’,x:A,E” ∫ x:A E ∫ a : B

Theorem (Ob1<: has minimum types)

In Ob1<:, if E ∫ a : A then there exists B such that E ∫ a : B and, for any A’,
if  E ∫ a : A’ then E ∫ B<:A’.
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Unsoundness of Covariance

U   @  [] The unit object type.

L   @  [l:U] An object type with just l.

L <: U

P   @   [x:U, f:U]

Q   @   [x:L, f:U]

Assume  Q <: P   by an (erroneous) covariant rule for object subtyping.

q : Q   @   [x=[l=[]], f=ς(s:Q)s.x.l]

then  q : P  by subsumption with Q <: P

hence q.x:=[]  : P      that is [x=[], f=ς(s:Q)s.x.l] : P

But  (q.x:=[]).f  fails!

(The essence of this counterexample is used to show the unsoundness of record
type covariance in presence of side-effecting field update. Interestingly, with
methods, the counterexample can be adapted to our side-effects-free setting.)
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A First-order Equational Theory

Consider:

A @ [x:Nat, f:Nat]

a:A @ [x=1, f=ς(s:A)1]

b:A @ [x=1, f=ς(s:A)s.x]

We have, informally,  a.x = b.x : Nat  and  a.f = b.f : Nat.

So, is a = b? Consider the context:

C{o} @ (o.x:=2).f

We have  C{a} = 1 ≠ 2 = C{b}. Hence:

a ≠ b : A

Still, a = [x=1] : [x:Nat]  and  b = [x=1] : [x:Nat]. Hence:

a = b : [x:Nat]

Finally:

a m b : [f:Nat]

This is sound but not provable in our theory. It would be unsound in an impera-
tive or concurrent context.
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(Eq Object) (where  A7[li:Bi iÏ1..n])

E, xi:A ∫ bi ↔ bi’ : Bi     ÓiÏ1..n
————————————————

E ∫ [li=ς(xi:A)bi iÏ1..n]  ↔  [li=ς(xi:A)bi’ iÏ1..n] : A

(Eq Sub Object) (where  A7[li:Bi iÏ1..n],  A’7[li:Bi iÏ1..n, lj:Bj jÏn+1..m])

E, xi:A ∫ bi : Bi   ÓiÏ1..n      E, xj:A’ ∫ bj : Bj   ÓjÏn+1..m
————————————————————

E ∫ [li=ς(xi:A)bi iÏ1..n]  ↔   [li=ς(xi:A’)bi iÏ1..n+m] : A

(Eval Select) (where  A7[li:Bi iÏ1..n],  a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A      jÏ1..n
————————

E ∫ a.lj  ↔  bj{xj←a} : Bj

(Eval Override) (where  A7[li:Bi iÏ1..n],  a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A      E, x:A ∫ b : Bj     jÏ1..n
—————————————————————

E ∫ a.ljfiüς(x:A)b  ↔  [lj=ς(x:A’)b, li=ς(xi:A’)bi iÏ(1..n+m)-{j}] :  A
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A @ [x:Nat, f:Nat]

a:A @ [x=1, f=ς(s:A)1]

b:A @ [x=1, f=ς(s:A)s.x]

The rule (Eq Object) is a congruence rule. (We omit the obvious congruence
rules for selection and override.) It can only compare objects of equal length.
Hence this is not sufficient to prove a↔[x=1]:[x:Nat].

Objects of different lengths can be compared by (Eq Sub Object). This rule re-
quires that, in the longer object, the common methods do not depend on the ad-
ditional methods, so that the common methods can be typed with the shorter type
as the type of self.

This allows us to conclude a↔ [x=1]:[x:Nat], but not a↔ [f=ς(s:A)s.x]:[f:Nat],
because f depends on a hidden method
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Function Types

Translation of function types:

äA→Bã @ [arg:äAã, val:äBã]

äxAãρ @ ρ(x)

äbA→B(aA)ãρ @
(äbãρ.arg fiü ς(x:äA→Bã) äaãρ).val for  x Ì FV(äaãρ)

äλ(x:A)bBãρ @
[arg = ς(x:äA→Bã) x.arg,

 val = ς(x:äA→Bã) äbãρ{x←x.arg}]

A→B   is invariant!
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Unsoundness of Method Extraction

(Val Extract) (where  A7[li:Bi iÏ1..n])

E ∫ a : A      jÏ1..n
——————

E ∫ a†lj : A→Bj

P   @   [f:[]]

Q   @   [f:[], y:[]]

Q <: P

p : P   @   [f=[]]

q : Q   @   [f=ς(s:Q)s.y,  y=[]]

then q : P by subsumption with Q <: P

hence q†f : P→[]          that is λ(s:Q)s.y : P→[]

But  q.f(p)  fails!
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Recursive Types

E ∫ µ(X)A if E,X ∫ A   and   A(X   (A contractive in X)

E ∫ fold(µ(X)A, a) : µ(X)A if E ∫ a : A{X←µ(X)A}

E ∫ unfold(a) : A{X←µ(X)A} if E ∫ a : µ(X)A

E ∫ µ(X)A <: µ(Y)B if E,Y,X<:Y ∫ A<:B   and   E ∫ µ(X)A, E ∫ µ(Y)B

In particular:

µ(X)[l:X, m:[], n:[]] </: µ(Y)[l:Y, m:[]]

Moreover, assuming so would be unsound.
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(Note)

This counterexample is a variation of the one against object type covariance. The
standard counterexamples for recursive types do not apply to invariant arrows.

Q = µ(Y)[l:Y, m:[]] UQ = [l:Q, m:[]]

P = µ(X)[l:X, m:[], n:[]] UP = [l:P, m:[], n:[]]

q : Q = µ(x:Q) fold(Q, [l=x, m=[]])

p : P = µ(x:P) fold(P, [l=x, m=ς(s:UP)unfold(s.l).n, n=[]])

Then p : Q  by subsumption

(unfold(p).l:=q) : Q that is [l=q, m=ς(s:UP)unfold(s.l).n, n=[]] : Q

But   (unfold(p).l:=q).m fails!
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Classes

If A  7  [li:Bi iÏ1..n] is an object type, then:

Class(A)   @   [new:A, li:A→Bi iÏ1..n]

Where

new:A is a generator for objects of type A

li:A→Bi is a pre-method for objects of type A

c : Class(A)   @
[new = ς(c:Class(A)) [li=ς(x:A)c.li(x) iÏ1..n],

  li = λ(xi:A)bi{xi} iÏ1..n]

We  can produce new objects as follows:

c.new 7 [li=ς(x:A)bi{x} iÏ1..n] : A
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Inheritance

Define inheritance as a new relation between class types:

Class(A’) inh Class(A)   iff    A’<:A

Let A 7 [li:Bi iÏ1..n] and A’ 7 [li:Bi iÏ1..n, lj:Bj jÏn+1..m], with A’ <: A.

Note that  Class(A’) </: Class(A) and Class(A) </: Class(A’).

Let c: Class(A), then

c.li: A→Bi <: A’→Bi.

Hence c.li is a good pre-method for Class(A’). For example, we may define:

c’ @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m] : Class(A’)

where class c’ inherits the methods li from class c.
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Shortcomings of First-Order Systems

“Expected” first-order subtypings fail, particularly for methods that return self:

P1   @   µ(X)[x:Int, mv_x:Int→X] movable 1-D points

P2   @   µ(X)[x,y:Int, mv_x,mv_y:Int→X] movable 2-D points

Unfortunately, P2 <: P1 is not provable (and inconsistent).

Solutions:

• Avoid methods specialization, to obtain P2 <: P1 (needs dynamic type tests):

P1   @   µ(X)[x:Int, mv_x:Int→X]

P2   @   µ(X)[x,y:Int, mv_x:Int→P1, mv_y:Int→X]

• Axiomatize primitive “Self” types, such that P2 <: P1 (axioms are non-trivial):

P1   @   [x:Int, mv_x:Int→Self]

P2   @   [x,y:Int, mv_x,mv_y:Int→Self]

• Use an imperative framework, where the problem is reduced (although not
eliminated) by taking mv_x:Unit.

• Move up to the second order, and see what can be done there.
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SECOND-ORDER OBJECT CALCULI

May 28, 1994   3:03 PM ESOP’94 39

Second-Order Calculi

Take a first-order object calculus with subtyping, and add bounded quantifiers:

Bounded universals: (contravariant in the bound)

E ∫ Ó(X<:A)B if E,X<:A ∫ B

E ∫ Ó(X<:A)B <: Ó(X<:A’)B’ if E ∫ A’ <: A   and   E,X<:A’ ∫ B <: B’

E ∫ λ(X<:A)b : Ó(X<:A)B if E,X<:A ∫ b : B

E ∫ b(A’) : B{A’} if E ∫ b : Ó(X<:A)B{X}   and   E ∫ A’<:A

Bounded existentials: (covariant in the bound)

E ∫ Ô(X<:A)B if E,X<:A ∫ B

E ∫ Ô(X<:A)B <: Ô(X<:A’)B’ if E ∫ A <: A’   and   E,X<:A ∫ B <: B’

E ∫ (pack X<:A=C, b{X}:B{X}) : Ô(X<:A)B{X}

if E ∫ C <: A   and   E ∫ b{C} : B{C}

E ∫ (open c as X<:A,x:B in d:D) : D

if E ∫ c : Ô(X<:A)B   and   E ∫ D   and   E,X<:A,x:B ∫ d : D
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Covariant Components

Suppose we have:

Point @ [x,y: Real]

ColorPoint <: Point @ [x,y: Real, c: Color]

Circle @ [center: Point, radius: Real]

ColorCircle @ [center: ColorPoint, radius: Real]

Unfortunately, ColorCircle </: Circle, because of invariance. Now redefine:

Circle @ Ô(X<:Point) [center: X, radius: Real]

ColorCircle @ Ô(X<:ColorPoint) [center: X, radius: Real]

Thus we gain ColorCircle <: Circle. But covariance in object types was supposed
to be unsound, so we must have lost something.

We have lost the ability (roughly) to update the center component, since X is un-
known. Therefore covariant components are (roughly) read-only components.

The center component can still be extracted out of the abstraction, by subsump-
tion from X to ColorPoint.
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Contravariant Components

There are techniques to obtain contravariant (write-only) components; but these
are more complex. (A write-only component can still be read by its sibling meth-
ods.) Here is an overview.

A @ [l:B, ...] which we want contravariant in B

is transformed into:

A’ @ ... [lovr:Y, l:B, ...] where Y<:(A’→B)→A’ and lovr overrides l

A’ is still invariant in B, but any element of A’ can be subsumed into:

A” @ ... [lovr:Y, ...] contravariant in B, with A’<:A”

The appropriate definitions are:

A’ @ µ(X) Ô(Y<:(X→B)→X) [lovr:Y, l:B, ...]

A” @ µ(X) Ô(Y<:(X→B)→X) [lovr:Y, ...]

Then  o.lfiüς(s:A)b  is simulated by a definable override(o’, lovr, λ (s:A”)b”) (i.e.,
roughly, o.lovr(λ(s:A)b)) for appropriate transformations of o:A into o’:A’ and b
into b”.
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Variant Product and Function Types

Encodings based on object types alone may be undesirably invariant. Quantifiers
can introduce the necessary degree of variance.

Variant product types can be define as:

A ×̇ B   @   Ô(X<:A) Ô(Y<:B) [fst:X, snd:Y]

With the property:

A ×̇ B <: A’ ×̇ B’ if A <: A’   and   B <: B’

Similarly, but somewhat more surprisingly, we can obtain variant function types:

A →̇ B   @   Ó(X<:A) Ô(Y<:B) [arg:X, val:Y]

With the property:

A →̇ B <: A’ →̇ B’ if A’ <: A   and   B <: B’
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Translation of the first-order λ-calculus with subtyping:

äA→Bã   @   Ó(X<:äAã) Ô(Y<:äBã) [arg:X, val:Y]

äxAãρ   @   ρ(x)

äbA→B(aA)ãρ   @ 

open äbãρ(äAã) as Y<:äBã, y:[arg:äAã, val:Y]

in (y.arg fiü ς(x:[arg:äAã, val:Y]) äaãρ).val for Y,y,x Ì FV(äaãρ)

äλ(x:A)bBãρ   @
λ(X<:äAã)

(pack Y<:äBã=äBã,

[arg = ς(x:[arg:X, val:äBã]) x.arg,

 val = ς(x:[arg:X, val:äBã]) äbãρ{x←x.arg}]

 : [arg:X, val:Y])
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Self Types

Recall that µ(X)B failed to give some expect subtyping behavior. We are now
looking for a different quantifier, ς(X)B, with the expected behavior.

P1   @   ς(Self)[x:Int, mv_x:Int→Self] movable 1-D points

P2   @   ς(Self)[x,y:Int, mv_x,mv_y:Int→Self] movable 2-D points

Let P1ÑXÖ   @   [x:Int, mv_x:Int→X]  be the X-unfolding of P1

with P1ÑP1Ö   7   [x:Int, mv_x:Int→P1] the self-unfolding of P1.

Some properties we expect for ς(X)B, are:

• Subtyping E.g.:  P2 <: P1

• Creation (folding) E.g.:  from P1ÑP1Ö to P1

• Selection (unfolding) E.g.:  p1.mv_x: Int→P1

• Update (refolding)

E.g.: from p1:P1  and a “Self-parametric” method such that

for all Y<:P1 and x:P1ÑYÖ gives Int→Y

produce a new P1 with an updated  mv_x
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The ς(X)B Quantifier

It turns out that Self can be formalized via a general quantifier, i.e., indepen-
dently of object types. Define:

ς(X)B @ µ(Y) Ô(X<:Y) B (Y not occurring in B)

The intuition is the following. Take A<:A’ with A≠A’:

Want: [l:A, m:C] <: [l:A’] (fails)

Do: Ô(X<:A) [l:X, m:C] <: Ô(X<:A’) [l:X] (holds)

Want: µ(Y) [l:Y, m:C] <: µ(Y) [l:Y] (fails)

Do: µ(Y) Ô(X<:Y) [l:X, m:C] <: µ(Y) Ô(X<:Y) [l:X] (holds)

This way we can have, e.g. P2<:P1. We achieve subtyping at the cost of making
certain fields covariant and, hence, essentially read-only. This suggests, in par-
ticular, that we will have difficulties in overriding methods that return self.
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(Note)

ς(X)B satisfies the subtyping property:

E ∫ ς(X)B <: ς(X)B’ if E,X ∫ B <: B’

even though we do not have, in general, µ(X)B <: µ(X)B’.

E,X ∫ B <: B’

⇒  E,Z,Y<:Z,X<:Y ∫ B <: B’ by weakening , for fresh Y,Z

⇒  E,Z,Y<:Z ∫ Ô(X<:Y)B <: Ô(X<:Z)B’ by (Sub Exists)

⇒  E ∫ µ(Y)Ô(X<:Y)B <: µ(Z)Ô(X<:Z)B’ by (Sub Rec) and contractiveness
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Building Elements of Type ς(X)B

Modulo an unfolding, ς(X)B 7 µ(Y)Ô(X<:Y)B (for Y not in B) is the same as:

Ô(X<:ς(X)B)B.

An element of Ô(X<:ς(X)B)B is a pair 〈 C, c〉  consisting of a subtype C of
ς(X)B{X} and an element c of B{C}.

We denote by

ς〈C, c〉
the injection of the pair 〈C, c〉  from Ô(X<:ς(X)B)B into ς(X)B.

For example, suppose we have an element x of type ς(X)X. Then, choosing
ς(X)X as the required subtype of ς(X)X, we obtain ς〈ς(X)X, x〉  : ς(X)X. There-
fore we can construct:

µ(x) ς〈ς(X)X, x〉   :  ς(X)X

The fully explicit version of ς〈C, c〉  is written:

ς(X<:ς(X)B=C) c (or   ς(X=ς(X)B) c    for C7ς(X)B)

and it binds the name X to C in c.
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Building a Memory Cell

Suppose we want to build a memory cell m:M with a read operation rd:Nat and a
write operation wr:Nat→M. We can define:

M @ ς(Self)[rd:Nat, wr:Nat→Self]

where the wr method should use its argument to override the rd field. For con-
venience, we adopt the following abbreviation to unfold a Self quantifier:

AÑCÖ   @   B{C} whenever A 7 ς(X)B{X}  and  C<:A

For example we have M ÑMÖ 7 [rd:Nat, wr:Nat→M].

Then we can define:

m: M @ ς〈M,

   [rd = 0,

    wr = ς(s:MÑMÖ) λ(n:Nat) ς〈M, s.rd:=n〉 ]〉
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Derived Rules for ς(X)B

Formally, we can define an introduction construct (ς(Y<:A=C)b{Y}) and an
elimination construct (use c as Y<:A, y:B{Y} in d:D), for ς(X)B, such that:

(Type Self) (Sub Self)

E,X ∫ B      B(X E,X ∫ B <: B’      B,B’(X
—————— —————————

E ∫ ς(X)B E ∫ ς(X)B <: ς(X)B’

(Val Self) (where  A7ς(X)B{X})

E ∫ C <: A      E ∫ b{C} : B{C}
———————————

E ∫ ς(Y<:A=C)b{Y} : A

(Val Use) (where  A7ς(X)B{X})

E ∫ c : A      E ∫ D      E, Y<:A, y:B{Y} ∫ d : D
————————————————

E ∫ (use c as Y<:A, y:B{Y} in d:D) : D

(Plus the derived equational theory.)
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(Note)

Define, for A7ς(X)B{X}, C<:A, and b{C}:B{C}:

ς(Y<:A=C) b{Y}     @ fold(A,  (pack Y<:A=C, b{Y}:B{Y}))

and, for c:A and d{Y,y}:D, where Y does not occur in D:

(use c as Y<:A, y:B{Y} in d{Y,y}:D)        @
(open unfold(c) as Y<:A, y:B{Y} in d{Y,y}:D)
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The ςOb Calculus

At this point we may extract a minimal second-order object calculus. We dis-
card the universal and existential quantifiers, and recursion, and we retain the  ς
quantifier and the object types:

A,B   ::= a,b   ::=

X x

Top [li=ς(xi:Ai)bi iÏ1..n]

[li:Bi iÏ1..n] a.l

ς(X)B a.lfiüς(x:A)b

ς(X<:A=B)b

use a as X<:A, y:B in b:D
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ς-Object Types

Now that we have a general formulation of ς(X)B, we can go back and consider
its application to object types. We consider types of the special form:

ς(X+)[li:Bi{X} iÏ1..n]   @   ς(X)[li:Bi{X} iÏ1..n]  when the Bi are covariant in X

Here, ς(X+)[li:Bi{X} iÏ1..n] are called ς-object types. Our goal is to discover their
derived typing rules.

• The covariance requirement is necessary to get selection to work. An exam-
ple of violation of covariance are “binary methods” such as:

ς(Self)[ ..., eq: Self→Bool, ... ]

(It turns out that p.eq cannot be given a type, because a contravariant Self occur-
rence is not able to escape the scope of the existential quantifier. A covariant Self
occurrence can be eliminated by subsumption into the object type.)

• The covariance requirements rules out “nested” Self types, because of the in-
variance of object type components (ς(Y) [l2: X] is invariant in X):

ς(X) [l1: ς(Y) [l2: X]]

• These restrictions are common in languages that admit Self types.
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Derived Rules for ς-Object Types

We have essentially the same rules for subtyping and construction. But now, the
generic “use” elimination construct of ς-quantifiers can be specialized to obtain
selection and override:

(Val ςSelect) (where  A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ a : A      jÏ1..n
——————

E ∫ a.lj : Bj{A+}

(Val ςOverride) (where  A7ς(X+)[li:Bi{X} iÏ1..n])

E ∫ a : A       E, Y<:A, x:AÑYÖ ∫ b : Bj{Y+}     jÏ1..n
—————————————–————

E ∫ a.ljfiüς(Y<:A, x:AÑYÖ)b :  A

where ς(Y<:A, x:AÑYÖ)b is a “Self-parametric” method that must produce for ev-
ery Y<:A and x:AÑYÖ (where x is self) a result of type Bj{Y+}, parametrically in
Y. In particular, it is unsound for the method to produce a result of type Bj{A}.

Hence the (already known) notion of Self-parametric methods falls out naturally
in this framework, as a condition for a derived rule.
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(Note)

Assume a:A with A7ς(X+)[li:Bi{X} iÏ1..n] and AÑXÖ7[li:Bi{X+} iÏ1..n], and set,
with some overloading of notation:

a.lj  @
(use a as Z<:A, y:AÑZÖ in y.lj  : Bi{A+})

a.ljfiüς(Y<:A, y:AÑYÖ, x:AÑYÖ)b{Y,y,x} @
(use a as Z<:A, y:AÑZÖ in ς(Y<:A=Z) (y.ljfiüς(x:AÑYÖ)b{Y,y,x}) : A)
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The Type of the Object-Oriented Naturals

We can finally give a type for the object-oriented natural numbers:

NOb   @   ς(Self+)[succ:Self, case:Ó(Z)Z→(Self→Z)→Z]

Note that the covariance restriction is respected.

The zero numeral can then be typed as follows:

zeroOb : NOb   @
ς(Self=NOb)

[ case = λ(Z) λ(z:Z) λ(f:Self→Z) z,

  succ = ς(n:NObÑSelfÖ)
ς〈Self, n.case := λ (Z) λ(z:Z) λ (f:Self→Z) f(ς〈Self,n〉)〉]
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The Type of the Calculator

C @   ς(Self+)[arg,acc: Real, enter: Real→Self, add,sub: Self, equals: Real]

Calc @   ς(Self+)[enter: Real→Self, add,sub: Self, equals: Real]

Then Calc <: C; we can hide arg and acc from clients.

calculator: C   @
ς(Self=C)

[arg = 0.0,

  acc = 0.0,

  enter = ς(s:CÑSelfÖ) λ(n:Real) ς〈Self, s.arg := n〉 ,

  add = ς(s:CÑSelfÖ)
ς〈Self, (s.acc := s.equals).equals fiü ς(s’:CÑSelfÖ) s’.acc+s’.arg〉 ,

 sub = ς(s:CÑSelfÖ)
ς〈Self, (s.acc := s.equals).equals fiü ς(s’:CÑSelfÖ) s’.acc-s’.arg〉 ,

 equals = ς(s:CÑSelfÖ) s.arg ]
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Overriding and Self

If we want to override a method of a ς-object o:A, the new method must work
for any possible Self<:A, because o might have been initially built as an element
of an unknown B<:A.

This is a tough requirement if the method result involves the Self type, since we
do not know the “true Self” of o.

(We have no such problem at object creation time, since the “true Self” is known
then. But the same difficulty would likely surface if we were creating objects in-
crementally, adding one method at a time to extensible objects.)
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Consider, for example, the type:

A  @  ς(Self+)[n:Int, m:Self] with AÑSelfÖ  7  [n:Int, m:Self]

According to the rule (Val ςOverride), an overriding method can use in its body
the variables Self<:A, and x:AÑSelfÖ, where x is the self of the new method.

Basically, for a method l with result type Bl{Self}, the override rule requires that
we construct a polymorphic function of type:

Ó(Self<:A) AÑSelfÖ→Bl{Self}

For n, we have no problem in returning a Bn{Self} 7 Int.

But for m, there is no obvious way of producing a Bm{Self} 7 Self from
x:AÑSelfÖ, except for x.m which loops. And we cannot construct an element of an
arbitrary Self<:A.

Moreover, using Ó(Self<:A) AÑSelfÖ→B{A}, for example, would be unsound.

In conclusion, the (Val ςOverride) rule, although sufficient for overriding simple
methods and fields, is not sufficient to allow us to usefully override methods that
return a value of type Self, after object construction.
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Recoup

We introduce a special method called recoup with an associated run-time invari-
ant. Recoup is a method that returns self immediately. The invariant asserts that
the result of recoup is its host object. These simple assumptions have surprising
consequences.

A  @  ς(Self+)[r:Self, n:Int, m:Self]        with AÑSelfÖ 7 [r:Self, n:Int, m:Self]

a : A  @  ς(Self<:A=A) [r = ς(x:AÑSelfÖ)ς〈Self,x〉 , ... ] : A

Then, the following override on m typechecks, since x.r has type Self:

a.m fiü ς(Self<:A, x:AÑSelfÖ) (x.n:=3).r :    A

The reduction behavior of this term relies on the recoup invariant. I.e., recoup
should be correctly initialized and not subsequently corrupted.

Intuitively, recoup allows us to recover a “parametric self ” x.r which equals the
object a but has type Self<:A (the “true Self”) and not just type A (the “known
Self”).
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In general, if A has the form ς(Self+)[r:Self, ...] then we can write useful poly-
morphic functions of type:

Ó(Self<:A) AÑSelfÖ→Self

that are not available without recoup. Such functions are parametric enough to be
useful for method override.

In a programming language based on these notions, recoup could be introduced
as a “built-in feature”, so that the recoup invariant is guaranteed for all objects at
all times.
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CONCLUSIONS

• An untyped object calculus with method override.

• First-order typing, with subsumption.

• Second-order typing, with Self types.

• Able to encode various λ -calculi.

• A CUPER semantics, and a coherent translation.

• An imperative version, with typing soundness.

• Object calculi taken to be as “fundamental” as λ-calculi.

• The final typed formal system is a standard second-order extension of an ele-
mentary first-order object calculus. In particular, no higher-order constructs.
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